Role of 3′UTRs in the Translation of mRNAs Regulated by Oncogenic eIF4E—A Computational Inference
نویسندگان
چکیده
Eukaryotic cap-dependent mRNA translation is mediated by the initiation factor eIF4E, which binds mRNAs and stimulates efficient translation initiation. eIF4E is often overexpressed in human cancers. To elucidate the molecular signature of eIF4E target mRNAs, we analyzed sequence and structural properties of two independently derived polyribosome recruited mRNA datasets. These datasets originate from studies of mRNAs that are actively being translated in response to cells over-expressing eIF4E or cells with an activated oncogenic AKT: eIF4E signaling pathway, respectively. Comparison of eIF4E target mRNAs to mRNAs insensitive to eIF4E-regulation has revealed surprising features in mRNA secondary structure, length and microRNA-binding properties. Fold-changes (the relative change in recruitment of an mRNA to actively translating polyribosomal complexes in response to eIF4E overexpression or AKT upregulation) are positively correlated with mRNA G+C content and negatively correlated with total and 3'UTR length of the mRNAs. A machine learning approach for predicting the fold change was created. Interesting tendencies of secondary structure stability are found near the start codon and at the beginning of the 3'UTR region. Highly upregulated mRNAs show negative selection (site avoidance) for binding sites of several microRNAs. These results are consistent with the emerging model of regulation of mRNA translation through a dynamic balance between translation initiation at the 5'UTR and microRNA binding at the 3'UTR.
منابع مشابه
Translational control of mRNAs by 3′-Untranslated region binding proteins
Eukaryotic gene expression is precisely regulated at all points between transcription and translation. In this review, we focus on translational control mediated by the 3'-untranslated regions (UTRs) of mRNAs. mRNA 3'-UTRs contain cis-acting elements that function in the regulation of protein translation or mRNA decay. Each RNA binding protein that binds to these cis-acting elements regulates m...
متن کاملHuman insulin-like growth factor II leader 2 mediates internal initiation of translation.
Insulin-like growth factor II (IGF-II) is a fetal growth factor, which belongs to the family of insulin-like peptides. During fetal life, the IGF-II gene generates three mRNAs with different 5' untranslated regions (UTRs), but identical coding regions and 3' UTRs. We have shown previously that IGF-II leader 3 mRNA translation is regulated by a rapamycin-sensitive pathway, whereas leader 4 mRNA ...
متن کاملPurification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...
متن کاملSumoylation of eIF4E activates mRNA translation.
Eukaryotic translation initiation factor 4E (eIF4E) is the cap-binding protein that binds the 5' cap structure of cellular messenger RNAs (mRNAs). Despite the obligatory role of eIF4E in cap-dependent mRNA translation, how the translation activity of eIF4E is controlled remains largely undefined. Here, we report that mammalian eIF4E is regulated by SUMO1 (small ubiquitin-related modifier 1) con...
متن کاملThe 4E-BP Caf20p Mediates Both eIF4E-Dependent and Independent Repression of Translation
Translation initiation factor eIF4E mediates mRNA selection for protein synthesis via the mRNA 5'cap. A family of binding proteins, termed the 4E-BPs, interact with eIF4E to hinder ribosome recruitment. Mechanisms underlying mRNA specificity for 4E-BP control remain poorly understood. Saccharomyces cerevisiae 4E-BPs, Caf20p and Eap1p, each regulate an overlapping set of mRNAs. We undertook glob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009